REPORT DOCUMENTATION

Public reporting burden for this collection of information is estimated to averag gathering and maintaining the data needed, and completing and reviewing the collection of information including suggestions for reducing this burden for National Stage of the Collection of the Office of Management (Collection of Collection of Collect

AD-A255 278

ipproved io. 0704-0188

arching existing data sources, te or any other aspect of this s and Reports, 1215 Jefferson aton, CC 20503

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

September 3, 1992

Final Report 7/1/87 - 9/30/91

4. TITLE AND SUBTITLE

Threshold Photodetachment Spectroscopy

DTIC

Contract Number: N0014-87-K-0495

6. AUTHOR(S)

Daniel M. Neumark

SEPi 5 1992

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California Department of Chemistry Berkeley, California 94720-9989 EFFORMING ORGANIZATION REPORT NUMBER

R&T Number: 400-x 026 yip

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research Chemistry Division, Code 1113 800 North Quincy Street Arlington, Virginia 22217-5000 10. SPONSORING / MONITORING AGENCY REPORT NUMBER

481230

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Unlimited. Available for public release and sale.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The goal of this project is to learn about the electronic and vibrational spectroscopy of size-selected clusters. This is done using high resolution negative ion photodetachment techniques developed in our laboratory during the last four years. In our experiments, a beam of cluster anions (typically C_n^- or Si_n^-) is generated using a laser vaporization source, mass-selected, and photodetached with a fixed-frequency or tunable laser. In the fixed-frequency experiments, we measure the electron kinetic energy distribution, thereby obtaining the anion photoelectron spectrum. This enables us to map out the electronic and vibrational states of the neutral cluster with about 10 meV resolution. For higher (0.4 meV) resolution studies, we use a technique called threshold photodetachment spectroscopy. Here, the cluster anions are detached with a tunable laser, and only those photoelectrons produced with nearly zero kinetic energy are collected. In principle, this yields the same information as the photoelectron spectrum, but the considerably higher resolution allows us to make much more definite assignments of the spectral features.

14. SUBJECT TERMS

carbon clusters, clusters, negative ion photodetachment, photodetachment, semiconductors, silicon dimer, transition states, transition state spectroscopy

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

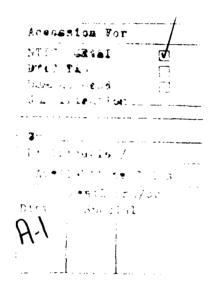
15. NUMBER OF PAGES

OFFICE OF NAVAL RESARCH

FINAL REPORT

for

CONTRACT NUMBER N0014-87-K-0495


R&T CODE 400x026yip

THRESHOLD PHOTODETACHMENT SPECTROSCOPY

Daniel M. Neumark

Department of Chemistry University of California Berkeley, California 94720

September 3, 1992

DTIC QUALITY INSPECTED 3

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.

92 9 14 061

Principal Investigator: Daniel M. Neumark

Telephone: (510) 642-3502

ONR Scientific Officer: Dr. Ronald A. DeMarco

Summary of Project:

The goal of this project was to learn about the electronic and vibrational spectroscopy of size-selected clusters. This is done using high resolution negative ion photodetachment techniques developed in our laboratory during the last four years. In our experiments, a beam of cluster anions (typically C_{n} or Si_{n}) is generated using a laser vaporization source, mass-selected, and photodetached with a fixed-frequency or tunable laser. In the fixed-frequency experiments, we measure the electron kinetic energy distribution, thereby obtaining the anion photoelectron spectrum. This enables us to map out the electronic and vibrational states of the neutral cluster with about 10 meV resolution. For higher (0.4 meV) resolution studies, we use a technique called threshold photodetachment spectroscopy. Here, $^{\text{th}}$ cluster anions are detached with a tunable laser, and only those photoelectrons produced with nearly zero kinetic energy are collected. In principle, this yields the same information as the photoelectron spectrum, but the considerably higher resolution allows us to make much more definite assignments of the spectral features.

We have made considerable progress in applying our combination of photodetachment techniques to silicon and carbon cluster anions. We have obtained vibrationally-resolved photoelectron spectra for Si_n^- (n = 2 - 4) and C_n^- (n = 2 - 11). These spectra represent the first observations of vibrationally resolved spectra for several of the polyatomic clusters. A comparison of the Si_4^- spectrum with *ab initio* calculations indicates that the ground states of Si_4 and Si_4^- have a planar rhombus structure. The C_n^- spectra are dominated by transi ions between linear forms of the anion and neutral clusters for n \leq 9, but the C_{10}^- and C_{11}^- spectra are dominated by transitions between cyclic

clusters. We have also obtained threshold photodetachment spectra of Si_2^- and C_5^- . The Si_2^- spectrum allows us to definitively order the several low-lying electronic states of Si_2 and Si_2^- . The C_5^- spectrum yields frequencies for low-frequency vibrational modes in the anion and neutral as well as the spin-orbit splitting in the anion.

List of Publications/Technical Reports

- T. N. Kitsopoulos, I. M. Waller, J. G. Loeser, and D. M. Neumark, "High Resolution Threshold Photodetachment Spectroscopy of Negative Ions," Chem. Phys. Lett. <u>159</u>, 300 (1989); Technical Report #1.
- D. M. Neumark, "Transition State Spectroscopy of Hydrogen Transfer Reactions," in <u>Electronic and Atomic Collisions: Invited Papers of the XVI ICPEAC</u> (AIP Conference Proceedings #205), edited by A. Dalgarno, R. S. Freund, P. Koch, M. S. Lubell, and T. B. Lucatorto (American Institute of Physics, New York: 1990), pp. 33-48; Technical Report #2.
- I. M. Waller, T. N. Kitsopoulos, and D. M. Neumark, "Threshold Photodetachment Spectroscopy of the I + HI Transition State Region," J. Phys. Chem. <u>94</u>, 2240 (1990); Technical Report #3.
- T. N. Kitsopoulos, C. J. Chick, A. Weaver, and D. M. Neumark, "Vibrationally-Resolved Photoelectron Spectra of Si₃⁻ and Si₄⁻," J. Chem. Phys. <u>93</u>, 6108 (1990); Technical Report #4.
- T. N. Kitsopoulos and D. M. Neumark, "Photoelectron Spectroscopy of Si₂-," Materials Research Symposium Proceedings, Vol. 206 (1990 Fall Meeting), Materials Research Society (1991), p. 71; Technical Report #5.
- T. N. Kitsopoulos, C. J. Chick, Y. Zhao, and D. M. Neumark, "Study of the Low-Lying Electronic States of Si₂ and Si₂- Using Negative Ion Photodetachment Techniques," J. Chem. Phys. <u>95</u>, 1441 (1991); Technical Report #6.
- 7) D. M. Neumark, "Negative Ion Photodetachment as a Probe of the Transition State Region: The I + HI Reaction," in <u>Advances in Molecular Vibrations and Collision Dynamics</u>, Vol. IA, ed. J. M. Bowman, (JAI Press, Greenwich, 1991) pp. 165-185; Technical Report #7.
- D. W. Arnold, S. E. Bradforth, T. N. Kitsopoulos, and D. M. Neumark,
 "Vibrationally Resolved Spectra of C₂-C₁₁ by Anion Photoelectron Spectroscopy,"
 J. Chem. Phys. <u>95</u>, 8753 (1991); Technical Report #8.
- 9) T. N. Kitsopoulos, C. J. Chick, Y. Zhao, and D. M. Neumark, "Threshold Photodetachment Spectroscopy of C₅-," J. Chem. Phys. <u>95</u>, 5479 (1991); Technical Report #9.

10) T. N. Kitsopoulos and D. M. Neumark, "Studying the Low Lying Electronic States of Small silison and Carbon Clusters Using Negative Ion Photodetachment Techniques," Proceedings of ONR Conference on Clusters, January 1990 (in press).

List of Participating Personnel:

Principal Investigator: Daniel M. Neumark

Graduate Students: Donald W. Arnold

Stephen E. Bradforth Caroline I. Chick

Caroline J. Chick Theofanis N. Kitsopoulos

Jennifer G. Loeser Alexandra Weaver Yuexing Zhao

Postdoctoral Associates: I. M

I. M. Waller